## Начальный уровень

1. Чему равна электроемкость конденсатора в колебательном контуре, если период его колебаний равен T, а индуктивность катушки равна L?

A. 
$$\frac{T^2}{4\pi^2L}$$
. B.  $\frac{T}{2\pi L}$ . B.  $\frac{T}{2\pi \sqrt{L}}$ .  $\Gamma$ .  $2\pi \sqrt{LC}$ .

- 2. Как изменится частота электромагнитных колебаний в колебательном контуре, если индуктивность катушки увеличить в 4 раза?
  - **А.** Уменьшится в 2 раза.
  - **Б.** Уменьшится в 4 раза.
  - В. Увеличится в 4 раза.
  - Г. Увеличится в 2 раза.
- 3. Изменение заряда конденсатора в колебательном контуре происходит по закону

 $q = 10^{-4}\cos 20\pi t$  (Кл). Чему равна частота электромагнитных колебаний в контуре?

А. 10 Гц. Б. 10π Гц. В. 5/π Гц. Г. 5 Гц.

## Средний уровень

- 4. Чем определяется период в автоколебательном генераторе незатухающих электромагнитных колебаний?
  - А. Только индуктивностью колебательного контура.
  - Б. Электрическим сопротивлением колебательного контура.
  - В. Электроемкостью и индуктивностью колебательного контура.
  - Г. Только электроемкостью колебательного контура.
- 5. Какие из колебаний, перечисленных ниже, относятся к свободным колебаниям?
  - А. Электромагнитные колебания в генераторе на транзисторе.
  - Б. Переменный ток в осветительной сети.
  - В. Колебания в колебательном контуре после зарядки конденсатора.
  - Г. Параметрические колебания.
- 6. Амплитудное значение напряжения в сети переменного тока равно 311 В. Чему примерно равно лействующее значение напряжения в сети?

A. 220 B. Б. 380 B. В. 311 В. Г. 110 В.

## Достаточный уровень

7. Каким выражением может определяться мгновенное значение магнитного потока через проволочную рамку площадью S, вращающуюся с угловой скоростью  $\omega$  в однородном магнитном поле с магнитной индукцией В?

A. BS. B.  $BS\cos\omega t$ . B.  $BS\omega\cos\omega t$ .  $\Gamma$ .  $BS\omega$ .

8. В течение какой части периода поддерживается отрицательный потенциал относительно эмиттера на базе транзистора высокочастотного генератора электромагнитных колебаний?

A. T. Б. T/2. В. T/8. Г. T/4.

9. Какой из приведенных ниже графиков соответствует зависимости емкостного



Высокий уровень

10. Изменение заряда конденсатора в колебательном контуре происходит по закону

$$q=10^{-3}\sin 10^2\pi t$$
 (Кл). Чему равна амплитуда силы тока в амперах?

**A.** 
$$\frac{\pi}{10}$$
. **B.**  $10^{-3}\pi$ . **B.**  $10^{-1}\cos 10^2\pi t$ .  $\Gamma$ .  $10^{-1}\sin 10^2\pi t$ .

11. Через активное сопротивление течет переменный ток с амплитудой гармонических колебаний  $I_m$ , амплитуда колебаний напряжения  $U_m$ , циклическая частота  $\omega$ . Чему равна мощность переменного тока в цепи при наличии реактивных элементов? Сдвиг фаз между колебаниями силы тока и напряжения равен  $\phi$ .

A. 
$$\frac{I_m U_m}{2} \cdot \cos \varphi$$
. Б.  $I_m U_m \cos^2 \varphi$ . В.  $I_m U_m$ .  $\Gamma$ .  $I_m U_m \cos \varphi$ .

- 12. Уравнение  $i=5\cos 5\pi t$  выражает зависимость силы тока (в амперах) от времени (в секундах) в колебательном контуре. Каково соотношение между энергией электрического поля конденсатора  $W_1$  и энергией магнитного поля в катушке  $W_2$ 
  - в момент времени t = 0 с?
    - **А.**  $W_1$  максимальна,  $W_2 = 0$ .
    - **Б.**  $W_1 = 0$ ,  $W_2$  максимальна.
    - **B.**  $W_1 = W_2$ .
    - $\Gamma$ .  $W_1$  и  $W_2$  максимальны.